42
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Artificial neural network-based modeling of Malachite green adsorption onto baru fruit endocarp: insights into equilibrium, kinetic, and thermodynamic behavior

, , , , , , , & show all
Published online: 17 May 2024
 

Abstract

In this study, artificial neural network (ANN) tools were employed to forecast the adsorption capacity of Malachite green (MG) by baru fruit endocarp waste (B@FE) under diverse conditions, including pH, adsorbent dosage, initial dye concentration, contact time, and temperature. Enhanced adsorption efficiency was notably observed under alkaline pH conditions (pH 10). Kinetic analysis indicated that the adsorption process closely followed a pseudo-second-order model, while equilibrium studies revealed the Langmuir isotherm as the most suitable model, estimating a maximum adsorption capacity of 57.85 mg g−1. Furthermore, the chemical adsorption of MG by B@FE was confirmed using the Dubinin–Radushkevich isotherm. Thermodynamic analysis suggested that the adsorption is spontaneous and endothermic. Various ANN architectures were explored, employing different activation functions such as identity, logistic, tanh, and exponential. Based on evaluation metrics like the coefficient of determination (R2) and root mean square error (RMSE), the optimal network configuration was identified as a 5–11-1 architecture, consisting of five input neurons, eleven hidden neurons, and one output neuron. Notably, the logistic activation function was applied in both the hidden and output layers for this configuration. This study highlights the efficacy of B@FE as an efficient adsorbent for MG removal from aqueous solutions and demonstrates the potential of ANN models in predicting adsorption behavior across varying environmental conditions, emphasizing their utility in this field.

GRAPHICAL ABSTRACT

NOVELTY STATEMENT

The innovative aspect of this study lies in the utilization of a new and effective adsorbent for the removal of Malachite Green (MG), derived from the fruit endocarp of baru (Dipteryx alata Vog.). The baru fruit endocarp, typically discarded as solid waste during processing, was found to possess favorable characteristics for adsorption processes and provides an adsorption capacity that exceeds that of most other similar adsorbents. Additionally, integrating Artificial Neural Networks (ANNs) enables accurate modeling of the adsorption process, eliminating the need for extensive laboratory experiments. This contributes significantly to wastewater treatment research, enhancing effectiveness and sustainability in unwanted dye removal.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 382.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.