18
Views
8
CrossRef citations to date
0
Altmetric
Articles

Ternary diffusion in Cu-Ni-Zn alloys at 1133 K

Pages 580-586 | Published online: 18 Jul 2013
 

Abstract

The interdiffusion coefficients in the α fcc phase of Cu-Ni-Zn alloys DZnZnCu, DZnNiCu, DNiNiCu and DNiZiCu at 1133 K have been determined by an extended Boltzmann-Matano method. The major coefficients DZnZnCu and DNiNiCu are positive, and the crosscoefficients DZnNiCuand DNiZnCu are negative. A pronounced concentration dependence of the four interdiffusion coefficients is observed, DZnZnCu being particularly sensitive to composition. From the estimated, values of interaction parameters, it is considered that the interaction energy of the Ni-Zn bond at 1131 K is much larger than the values for the Cu-Zn and Cu-Ni bonds. The tracer diffusion coefficients DZu*, DNi* and DCu* calculated from the equations of Zieboldand Ogilvie are in the order DZu* > DCu* > DNi*. In addition, the calculated intrinsic diffusion coefficients DZnZnCu and DNiNiCu are positive, and the four other coefficients are negative.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.