47
Views
12
CrossRef citations to date
0
Altmetric
Original Paper

Ketamine blocks non-N-methyl-D-aspartate receptor channels attenuating glutamatergic transmission in the auditory cortex

, &
Pages 454-458 | Received 01 Sep 2003, Accepted 11 Sep 2003, Published online: 08 Jul 2009
 

Abstract

Objective To investigate the influence of ketamine on non-N-methyl-D-aspartate (NMDA) receptor-mediated synaptic transmission in the auditory cortex.

Material and Methods Using whole-cell patch-clamp techniques on pyramidal neurons, we studied the effects of ketamine on excitatory post-synaptic potentials (EPSPs) evoked by electrical stimulation of internal capsule fibers in slices of gerbil auditory cortex.

Results After blockade of the slow, NMDA receptor-mediated EPSP component with dl-2-amino-5-phosphonovaleric acid, application of ketamine in a concentration-dependent manner led to a reduction in the amplitude of fast, 6-cyano-7-nitroquinoxalinedione (CNQX)-sensitive EPSPs, accompanied by an increased membrane resistance. Blockade of non-NMDA glutamate receptors with CNQX prevented both effects.

Conclusion Ketamine reduces membrane conductance and glutamatergic excitation, in part by blocking alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid receptor channels that may be constitutively active at a low level in slice preparations of auditory cortex.

Leong D, Puil E, Schwarz D. Ketamine blocks non-N-methyl-D-aspartate receptor channels attenuating glutamatergic transmission in the auditory cortex. Acta Otolaryngol 2004; 124: 454–458.

Leong D, Puil E, Schwarz D. Ketamine blocks non-N-methyl-D-aspartate receptor channels attenuating glutamatergic transmission in the auditory cortex. Acta Otolaryngol 2004; 124: 454–458.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.