122
Views
7
CrossRef citations to date
0
Altmetric
Section A

Stochastic stability of uncertain fuzzy recurrent neural networks with Markovian jumping parameters

&
Pages 892-904 | Received 12 Dec 2008, Accepted 17 Feb 2010, Published online: 16 Dec 2010
 

Abstract

In this paper, the global robust stability of uncertain recurrent neural networks with Markovian jumping parameters which are represented by the Takagi–Sugeno fuzzy model is considered. A novel linear matrix inequality-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy recurrent neural networks with Markovian jumping parameters. Finally, numerical examples are given to demonstrate the correctness of the theoretical results. Our results are also compared with results discussed in Arik [On the global asymptotic stability of delayed cellular neural networks, IEEE Trans. Circ. Syst. I 47 (2000), pp. 571–574], Cao [Global stability conditions for delayed CNNs, IEEE Trans. Circ. Syst. I 48 (2001), pp. 1330–1333] and Lou and Cui [Delay-dependent stochastic stability of delayed Hopfield neural networks with Markovian jump parameters, J. Math. Anal. Appl. 328 (2007), pp. 316–326] to show the effectiveness and conservativeness.

2000 AMS Subject Classifications :

Acknowledgements

The authors are grateful to the editor and the anonymous reviewers for their valuable comments and suggestions. The work was supported by NBHM project grant No.48/1/2007/-RD-II/7446.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.