199
Views
2
CrossRef citations to date
0
Altmetric
Original Article

Combination of constraint-induced movement therapy with fasudil amplifies neurogenesis after focal cerebral ischemia/reperfusion in rats

ORCID Icon &
Pages 1254-1260 | Received 06 Mar 2020, Accepted 30 Dec 2020, Published online: 05 Feb 2021
 

Abstract

Purpose

Spontaneous axonal plasticity and functional restoration after stroke may be limited by Nogo-A, a myelin-associated inhibitor, via activation of the Rho/Rho-associated protein kinase (ROCK) pathway. Constraint-induced movement therapy (CIMT) is a rehabilitation technique based on neuroplasticity and neural recombination. We recently reported that CIMT promoted neurogenesis after cerebral ischemia/reperfusion in part by inhibiting the Nogo-A–RhoA–ROCK pathway. Here, we examine the hypothesis that CIMT combined with the ROCK inhibitor fasudil further amplifies neurogenesis during stroke recovery.

Methods

Four groups of rats were randomized as follows: Cerebral ischemia-reperfusion (IR), Fasudil, CIMT and CIMT + Fasudil. Seven days after stroke, CIMT and/or intraperitoneal infusion of fasudil were initiated and continued for 3 weeks. The behavioral outcomes and immunohistochemical markers of neurogenesis were quantified.

Results

Compared with other groups, the combination of CIMT with fasudil after IR significantly improved motor and memory function recovery. In addition, BrdU, BrdU/doublecortin and BrdU/GFAP all increased significantly in the brain tissue of the combined treatment group compared to the CIMT or Fasudil group.

Conclusion

These results suggest that the effects of CIMT on neurogenesis are amplified by fasudil during the recovery phase after stroke.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.