177
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

High Temperature Flexural Strength, Microstructure, and Phase Evolution of Quartz Fiber/Boron Phenolic Resin Ceramizable Composite Modified with W and B4C

, , , , , & show all
Pages 209-225 | Received 24 Aug 2023, Accepted 08 Sep 2023, Published online: 29 Sep 2023
 

Abstract

In order to investigate the effect of refractory metal on the high temperature properties of phenolic resin matrix composites, modified quartz fiber reinforced ceramizable composites were prepared by a molding process with a refractory component, tungsten, as the functional component and boron carbide as the ceramic forming agent. The effects of the tungsten and the boron carbide on the heat resistance of the composite were investigated. The results showed that the introduced refractory metal tungsten and the boron carbide can react to form tungsten borides and tungsten carbides at high temperature, and form a ceramic layer on the surface of the composite, which can fill the defects caused by pyrolysis of matrix and improve the high temperature performance of the composite. When the content of boron carbide was 10 wt% and the content of tungsten powder was 30 wt%, the flexural strength of the composite before and after heat treatment at 1200 °C were increased by 54.6% and 30.2% respectively compared with that without filler.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was funded by the Independent Innovation Projects of the Hubei Longzhong Laboratory (2022ZZ-08), the Fundamental Research Funds for the Central Universities (2023-CL-B1-08) and the Industrialization Project of the Xiangyang Technology Transfer Center of Wuhan University of Technology (WXCJ-20220008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.