58
Views
5
CrossRef citations to date
0
Altmetric
Research Article

DNA Metabolism in Mycobacterium tuberculosis: Implications for Drug Resistance and Strain Variability

Pages 101-105 | Published online: 08 Jul 2009
 

Abstract

In this paper, we review the evidence supporting the notion that the genome of Mycobacterium tuberculosis sustains considerable damage as a result of exposure to nitrosative and oxidative stress. On these grounds, we propose a model in which stress-induced DNA damage in M. tuberculosis plays a role in the evolution of chromosomally encoded drug resistance mutations by altering the global mutation rate by mechanisms akin to SOS mutagenesis. Finally we review some of the factors determining the evolution of PE/PPE and MIRU (There are many abbreviations in this paper which are not defined, e.g. SOS, PE/PPE and MIRU. Please indicate whether these are well known and will be understood by readers or whether they should be defined at first mention) loci whose sequence characteristics are suggestive of their classification as heritable local mutators.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.