33
Views
10
CrossRef citations to date
0
Altmetric
Original Article

Clostridium difficile Toxin B, an Inhibitor of the Small GTPases Rho, Rac and Cdc42, Influences Spiral Ganglion Neurite Outgrowth

, , , , &
Pages 20-25 | Received 01 Jul 2004, Accepted 01 Jul 2004, Published online: 16 Dec 2009
 

Abstract

Objective--Neurotrophins and extracellular matrix (ECM) molecules are involved in neurite guidance during the development of spiral ganglion (SG) neurons. Several intracellular signaling molecules can be activated by ECMs and neurotrophins via their cognate receptors. In other systems these include the Rho small GTPases, which influence reorganization of the actin cytoskeleton that is required for axon growth. The aim of this study was to determine whether neurotrophin-3 (NT-3)-mediated SG neurite outgrowth on laminin-1 (LN) is dependent on the activation of the small GTPases Rho/Rac/Cdc42. Material and methods--SG explants from postnatal Day 4 rats were cultured on LN with and without NT-3 and increasing concentrations of Clostridium difficile Toxin B, an inhibitor of Rho GTPases. After fixation and immunocytochemical labeling, neurite growth was evaluated. Results--Treatment with C. difficile Toxin B without NT-3 lead to a dose-dependent decrease in the length and number of processes on LN. In contrast, C. difficile Toxin B had no significant effect on NT-3-mediated stimulation of neurite growth on LN, in terms of either number or length. Conclusion--The results suggest that the Rho GTPases (Rho, Rac and Cdc42) are not involved in the pathways linking NT-3 signals to neurite outgrowth, but appear to be involved in LN signaling in these neurons. However, NT-3 can override or bypass LN signaling to promote neurite extension.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.