Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 46, 2016 - Issue 23
110
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Experimental and theoretical study of I2-catalyzed dialkenyl oxindoles synthesis from isatins and α-cyano ketene ethylene dithioacetal

, , , , &
Pages 1924-1931 | Received 29 Feb 2016, Published online: 07 Oct 2016
 

ABSTRACT

An I2-catalyzed synthesis of dialkenyl oxindoles from isatins and α-cyano ketene ethylene dithioacetal is described. Both electron-withdrawing groups (EWGs) and alkylthio groups exert effects on the reactivities of ketene dithioacetals. Density functional theory (DFT) calculations suggested that the highest negative charge density on the α-carbon of α-cyano ketene ethylene dithioacetal and the largest positive charge on C(3) of the related key intermediate are both responsible for the superior activity of α-cyano ketene ethylene dithioacetal. The cationic intermediate derived from 2-(1,3-dithian-2-ylidene)acetonitrile is the most stable but the least positive, thus the corresponding alkenylhydroxyoxindole is the thermally stable and separable product. Other ketene dithioacetals are less nucleophilic, and their corresponding cationic intermediates are probably not positive enough to enable further transformation.

GRAPHICAL ABSTRACT

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.