Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 37, 2007 - Issue 2
205
Views
29
CrossRef citations to date
0
Altmetric
Research Article

Drug–drug interactions in the metabolism of imidafenacin: Role of the human cytochrome P450 enzymes and UDP-glucuronic acid transferases, and potential of imidafenacin to inhibit human cytochrome P450 enzymes

, , , &
Pages 139-154 | Received 18 Oct 2006, Accepted 27 Nov 2006, Published online: 22 Sep 2008
 

Abstract

Imidafenacin (IM), 4-(2-methyl-1H-imidazol-1-yl)-2,2-diphenylbutanamide, is a newly synthesized antimuscarinic drug developed for the treatment of overactive bladder. To predict clinically relevant drug interactions in the metabolism of IM, the paper investigated: (1) the major enzymes responsible for the metabolism of IM, (2) the effects of concomitant drugs on the inhibition of metabolism of IM, and (3) the effects of IM and its metabolites on the inhibition of human cytochrome P450 (CYP). The elimination of IM and production of oxidative metabolites were mainly catalysed by recombinant CYP3A4, and the elimination of IM by human liver microsomes (HLM) was markedly inhibited by co-incubation with ketoconazole. The production of the N-glucuronide metabolite was only catalysed by recombinant UGT1A4. Clinically established CYP3A4 inhibitors including itraconazole, ketoconazole, erythromycin and clarithromycin inhibited the elimination of IM in HLM. IM and its major metabolites did not affect the activities of CYP enzymes in vitro. The results suggest that the major enzymes responsible for the metabolism of IM are CYP3A4 and UGT1A4, and oxidative metabolism of IM is reduced by concomitant administration of CYP3A4 inhibitors. In contrast, IM and its metabolites have no inhibitory effect on the CYP-mediated metabolism of concomitant drugs.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.