96
Views
31
CrossRef citations to date
0
Altmetric
Research Article

Lead-Induced Genotoxicity in Lymphocytes from Peripheral Blood Samples of Humans: In Vitro Studies

, , , &
Pages 111-124 | Published online: 09 Oct 2008
 

Abstract

Lead is a known toxicant that has been implicated in encephalopathy in children and may affect the gastrointestinal and hematopoietic and other systems in adults. In fact, lead has been shown to compete with calcium for entry into the synaptosome and induce toxic effects. The aim of the current study was to evaluate the cytotoxic and genotoxic effects of lead by using lymphocytes from human peripheral blood in vitro. The LC50 for lead nitrate as determined by Trypan blue dye exclusion technique was found to be 3.14 mM. Chromosomal aberration frequency at sublethal doses (1/10 of LC50) as determined by examining the metaphase chromosomes (karyotyping) did not show significant aberrations except for some aneuploidy and about 2–4% gaps, breaks (3–4%), and about 5% satellite associations. However, significant DNA damage was determined by SCGE (Comet assay). The comet tail length proportionately increased with increasing lead nitrate concentration. Thus, Pb can induce single-strand DNA breaks, possibly by competing with metal binding sites.

Notes

Cropeck, D. (2002). Metal ion sensor with catalytic DNA in a nanofluidic intelligent processor. Strategic Environmental Research and Development Program.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.