49
Views
0
CrossRef citations to date
0
Altmetric
Adsorption

Co-carbonization of hazelnut shell and lemna minor: its effectiveness in adsorption of crystal violet from an aqueous solution

ORCID Icon
Pages 737-747 | Received 04 Dec 2023, Accepted 24 Apr 2024, Published online: 08 May 2024
 

ABSTRACT

Co-carbonization of waste biomass is of great interest to reduce production costs and increase carbon yields. In this study, it was investigated to produce cost-effective and high carbon yield activated carbons by carbonizing lemna minor (LM) and hazelnut shell (HS) wastes together. In this context, LM and HS were co-carbonized at 800°C, 100 mL/min of N2 for 90 min, and their carbonization yields, adsorption capacities, physical and chemical properties were determined. X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV), energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), ultimate and proximate analysis were performed. According to XRD analysis, HS is amorphous, LM is semi-crystalline, but the crystalline structure increased after co-carbonization. Based on the FTIR analysis LM, HS, and cLM/HS contain various functional groups, including O-H, C-H, and C-O. The adsorption capacity and CV removal, obtained by co-carbonized LM and HS (cLM/HS), are 87.95 mg/g and 88%, respectively. Its specific surface area is 745 m2/g. This study showed that the cLM/HS is a cost-effective adsorbent for the removal of crystal violet dye.

GRAPHICAL ABSTRACT

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

All data in the manuscript.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.