959
Views
3
CrossRef citations to date
0
Altmetric
Original Research Article

Parvalbumin expression affects synaptic development and physiology at the Drosophila larval NMJ

, &
Pages 209-220 | Received 23 Mar 2018, Accepted 05 Jul 2018, Published online: 03 Sep 2018
 

Abstract

Presynaptic Ca2+ appears to play multiple roles in synaptic development and physiology. We examined the effect of buffering presynaptic Ca2+ by expressing parvalbumin (PV) in Drosophila neurons, which do not normally express PV. The studies were performed on the identified Ib terminal that innervates muscle fiber 5. The volume-averaged, residual Ca2+ resulting from single action potentials (APs) and AP trains was measured using the fluorescent Ca2+ indicator, OGB-1. PV reduced the amplitude and decay time constant (τ) for single-AP Ca2+ transients. For AP trains, there was a reduction in the rate of rise and decay of [Ca2+]i but the plateau [Ca2+]i was not affected. Electrophysiological recordings from muscle fiber 5 showed a reduction in paired-pulse facilitation, particularly the F1 component; this was likely due to the reduction in residual Ca2+. These synapses also showed reduced synaptic enhancement during AP trains, presumably due to less buildup of synaptic facilitation. The transmitter release for single APs was increased for the PV-expressing terminals and this may have been a homeostatic response to the decrease in facilitation. Confocal microscopy was used to examine the structure of the motor terminals and PV expression resulted in smaller motor terminals with fewer synaptic boutons and active zones. This result supports earlier proposals that increased AP activity promotes motor terminal growth through increases in presynaptic [Ca2+]i.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This research was supported by National Science Foundation, Grant IOS1051605 (GAL).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.