82
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Investigation of capillary forces and capillary bridges between an end-adjusted three-finger microgripper with hydrophobic side surface and a plate

, , , , &
Pages 1702-1717 | Received 15 Apr 2023, Accepted 07 Oct 2023, Published online: 18 Oct 2023
 

Abstract

Capillary forces generated by capillary adsorption between varied solids have been widely used in micro-objects manipulation. In present study, capillary forces and capillary bridges between an end-adjusted three-finger capillary microgripper with hydrophobic side surface and a plate were investigated. The effects of the separation distance on capillary forces for three configurations of capillary bridges were analyzed experimentally using a customized platform to verify the effectiveness of the established capillary models. The results show that the capillary forces increased sharply in the initial stage, followed by a decrease. The maximum capillary force of 141.1 μN was obtained for the capillary bridge of Structure A with capillary bridge volume of 0.55 μL. The effects of the capillary bridge volume, radial distance between probes and contact angles on the capillary forces were analyzed based on the established simulation model. The results indicate that the variation of capillary force with capillary bridge volume increasing was not monotonic because of the restriction of the probe edge. The capillary force changing was more sensitive to the variation of the contact angle on the plate than the variation of the contact angle on the probe end surface. Additionally, experimental analysis was conducted on variations in capillary forces for two types of the microgripper with variable relative axial distance between probes. The capillary forces increased as the relative axial distance between the probes increased, and then decreased. The maximum capillary force of 159.15 μN was obtained for Type 1 capillary bridge with capillary bridge volume of 0.45 μL.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This research was supported by the project of Shandong Provincial Natural Science Foundation of China (Grant Nos. ZR2023ME060 and ZR2022ME134), China Postdoctoral Science Foundation (Grant No. 2023M732112), National Natural Science Foundation of China (Grant No. 51905323), and Shandong Provincial Postdoctoral Science Foundation of China (Grant No. SDCX-ZG-202203054).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.