1,631
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Cigarette smoke extract-induced inflammatory response via inhibition of the TFEB-mediated autophagy in NR8383 cells

, , , , , , & show all
Pages 39-48 | Received 25 Apr 2022, Accepted 29 Dec 2022, Published online: 13 Jan 2023
 

Abstract

Objective: Chronic pulmonary inflammation caused by long-term smoking is the core pathology of COPD. Alveolar macrophages (AMs) are involved in the pulmonary inflammation of COPD. The accumulation of damaged materials caused by impaired autophagy triggers inflammatory response in macrophages. As a key transcription regulator, transcription factor EB (TFEB) activates the transcription of target genes related autophagy and lysosome by binding to promoters, whereas it is unclarified for the relationship between inflammatory response induced by cigarette smoke extract (CSE) and TFEB-mediated autophagy. Thus, we investigated the role of TFEB-mediated autophagy in inflammatory response induced by CSE in NR8383 cells, and to explore its potential mechanism. Methods: Based on cell viability and autophagy, cells treated with 20% concentration of CSE for 24 h were selected for further studies. Cells were divided into control group, chloroquine (CQ, the autophagy inhibitor) group, CSE group, CSE + rapamycin (the autophagy inducer) group and CSE + fisetin (the TFEB inducer) group. The levels of tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and IL-6 in supernatant were detected by ELISA kits. The protein expressions were tested by western blot. The intensity of fluorescence of Lysosome-associated membrane protein 1 (LAMP1) and TFEB was detected by immunofluorescence. Lyso-Tracker Red staining was applied to detect the lysosome environment. Results: CSE inhibited the cell viability, increased the contents of TNF-α, IL-1β, IL-6, the ratio of LC3II/I, and the level of P62 protein. Besides, CSE decreased the fluorescence intensity of LAMP1 protein and Lyso-Tracker Red staining, as well as the ratio of nucleus/cytosol of TFEB protein. Activating autophagy with rapamycin alleviated CSE-induced inflammatory response. The activation of TFEB via fisetin alleviated CSE-induced autophagy impairment and lysosomal dysfunction, thus alleviated inflammatory response in NR8383 cells. Conclusion: CSE-induced inflammatory response in NR8383 cells, which may be related to the inhibition of TFEB-mediated autophagy.

Disclosure statement

No conflict of interest was reported by the authors.

Additional information

Funding

This study was supported by grants from the National Natural Science Foundation of China (No. 81373743), Natural Science Foundation of Anhui Province in China (No. 2008085MH267), Key Project of Natural Science of Anhui Provincial Department of Education [2022AH040078], and Natural Science Foundation of the Anhui University of Chinese Medicine (No. 2020zrzd03).