185
Views
17
CrossRef citations to date
0
Altmetric
ARTICLES

Autophagic Degeneration of Motor Neurons in a Model of Slow Glutamate Excitotoxicity in Vitro

, MD, , MD, , MD & , MD
Pages 331-339 | Received 14 Apr 2005, Accepted 31 May 2005, Published online: 10 Jul 2009
 

Abstract

There is increasing evidence that so-called “autophagic cell death” participates in cell degeneration in certain pathological conditions. Autophagy might be involved in some neurodegenerative processes, including lateral amyotrophic sclerosis (SLA). The exact mechanism leading to progressive motor neuron (MN) loss remains unclear, but glutamate-mediated mechanism is thought to be responsible. Previous ultrastructural studies by the authors performed on a model of SLA in vitro, based on chronic glutamate excitotoxicity, revealed a subset of morphological features characteristic to different modes of neuronal death, including autophagic degeneration. The contribution of this pathway of MNs death is evaluated in organotypic cultures of rat lumbar spinal cord chronically exposed to specific glutamate uptake blockers: DL-threo-β-hydroxyaspartate (THA) and L-transpyrrolidine-2,4-dicarboxylate (PDC). The study documents the various steps of authophagy in slowly evolving process of MN neurodegeneration. The cells undergoing autophagy usually exhibited sequestration of some parts of cytoplasm with normal and/or degenerated organelles, whereas other parts of cytoplasm as well as neuronal nucleus remained unchanged. The advanced autophagic changes were often associated with other modes of MN death, especially with apoptosis. Numerous MNs revealed apoptotic nuclear features with typical peripheral margination of nuclear chromatin, accompanied by severe autophagic or autophagic-necrotic degeneration of the cytoplasm. These results support the opinion of unclear distinction between different modes of cell death and indicate the involvement of autophagey in MNs neurodegeneration in vitro.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.