120
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effect of comb polymer dispersants with different molecular structures on the performance of LiFePO4 suspensions

, , , &
Pages 1241-1250 | Received 15 Dec 2022, Accepted 13 Apr 2023, Published online: 21 Jul 2023
 

Abstract

A series of comb polymers poly(2-(dimethylamino)ethyl methacrylate (DMAEMA)-co-methacrylic acid (MAA)-co-methoxy polyethylene glycol methacrylate (MPEGMA)) (poly(DMAEMA-MAA-MPEGMA, DMM) were synthesized and used as N-methyl-2-pyrolidinone (NMP)-based lithium iron phosphate (LFP) suspension dispersants. The effects of the grafting density of the carboxyl group as the anchoring group and the chain length of the side chain of PEG, which plays the role of spatial site resistance, on the rheological properties and suspension stability of the slurry were systematically investigated. By investigating the adsorption amount and thickness of DMM on the LFP surface, combined with calculations based on the scalar law and Flory theory, the molecular structure of the comb polymer dispersant was revealed to influence the adsorption and dispersion performance. The dispersion of LiFePO4 was due to the synergistic effects of adsorption and steric hindrance effect, which resulted that dispersants with medium carboxyl density and PEG side chain length can improve the dispersion performance and stability.

Graphical abstract

Acknowledgments

The authors would like to gratefully acknowledge the financial support (19DZ2293200) from Science and Technology Commission of Shanghai Municipality.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.