347
Views
258
CrossRef citations to date
0
Altmetric
Research Article

In-vitro release characteristics of tetracycline HCl, khellin and nicotinamide adenine dineculeotide from halloysite; a cylindrical mineral

Pages 713-722 | Published online: 29 Sep 2008
 

Abstract

The use of halloysite clay as a low cost alternative to more traditional microencapsulation systems is reported. Halloysite is an alumino-silicate clay which demonstrates a predominately cylindrical geometry, uniquely characterized by a hollow core or series of voids with diameters ranging from 16-50 nm. These nanoscale-to-mesoscale microcylinders are capable of entrapping active agents within the core lumen as well as within any void spaces contained in the multilayered walls of the cylinder. Some of the active agents associated with the clay are also bound to the external surfaces of the clay. Delivery of the active agent is first by desorption of the active agent from the exterior surfaces and exposed ends of the microcylinders, and is followed by a second more prolonged phase dominated by pore diffusion from the ends of the cylinders. Halloysite is capable of retaining and releasing a range of active ingredients. Both hydrophilic and hydrophobic agents may be entrapped following appropriate pre-treatment of the clay to render it lipophilic. Here, a unique low cost alternative microcylindrical delivery system: the clay mineral halloysite, is investigated.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.