313
Views
103
CrossRef citations to date
0
Altmetric
Research Article

Microentrapment of probiotic bacteria in a Ca2 +-induced whey protein gel and effects on their viability in a dynamic gastro-intestinal model

, , , , &
Pages 603-619 | Received 12 Nov 2004, Accepted 10 Mar 2005, Published online: 03 Oct 2008
 

Abstract

Entrapping probiotic bacteria in gels with ionic cross-linking is typically achieved with polysaccharides (alginate, pectin, carraghenan). In this study, whey proteins were used for this purpose by carrying out the Ca2+-induced gelation of pre-heated whey protein isolate (WPI). A Lactobacillus rhamnosus cell suspension was added in a denatured WPI solution in a 30 : 70 volume ratio. Gelation was carried out by extrusion of the cell suspension in a CaCl2 solution. Beads of ∼3 mm diameter were formed. The population in the beads was 8.0 × 108 cells g−1. Entrapment efficiency in gel beads was 96%, with a survival level of 23%. Scanning electron microscopy of beads before freeze-drying showed a tight protein network containing encapsulated Lb. rhamnosus cells homogeneously distributed throughout the matrix. The survival to freeze-drying of the bead-entrapped cells was 41%. Viability of microentrapped cells in a dynamic gastro-intestinal (GI) model was studied and the results were compared to free cells freeze-dried in a milk-based cryoprotective solution, as well as in a pre-denatured WPI solution. Results showed that protein gelation provided protection against acidic conditions in the stomach after 90 min, as well as against bile after 30, 60 and 90 min in the duodenum. Moreover, the milk-based cryoprotective solution was equally effective after 90 min in the duodenum. It is concluded that the gelation of whey proteins induced by Ca2+ ions can protect the cells against adverse conditions of the GI system. However, certain stages in the entrapment process, particularly extrusion in the solution of CaCl2, still need to be optimized in order to reduce the mortality of the cells during gelation.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.