258
Views
31
CrossRef citations to date
0
Altmetric
Research Article

Co-encapsulation of dexamethasone 21-acetate and SPIONs into biodegradable polymeric microparticles designed for intra-articular delivery

, , , &
Pages 339-350 | Received 14 Dec 2007, Accepted 18 Feb 2008, Published online: 08 Oct 2008
 

Abstract

Objective: Intra-articular drug delivery systems still suffer from too short-lasting effects. Magnetic particles retained in the joint using an external magnetic field might prolong the local release of an anti-inflammatory drug. For the purpose, superparamagnetic iron oxide nanoparticles (SPIONs) and dexamethasone 21-acetate (DXM) were co-encapsulated into biodegradable microparticles.

Methods: Poly(D,L-lactide-co-glycolide) microparticles embedding both SPIONs and DXM were prepared by a double emulsion technique. The formulation was optimized in two steps, a screening design and a full factorial design, aiming at 10-μm particle diameter and high DXM encapsulation efficacy.

Results: The most significant parameters were the polymer concentration, the stirring speed during solvent extraction and the extractive volume. Increasing the polymer concentration from 200 to 300 mg ml−1, both the microparticle mean diameter and the DXM encapsulation efficacy increased up to 12 μm and 90%, respectively. The microparticles could be retained with an external magnet of 0.8 T placed at 3 mm. Faster DXM release was obtained for smaller microparticles.

Conclusion: The experimental set-up offered the tools for tailoring a formulation with magnetic retention properties and DXM release patterns corresponding to the required specifications for intra-articular administration.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.