63
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Effect of ultrasonication on the stability of oligonucleotides adsorbed on nanoparticles and liposomes

Pages 501-509 | Published online: 29 Sep 2008
 

Abstract

In the present study, oligonucleotides were adsorbed onto the surface of cationic liposomes and nanoparticles at different ratios. As a result, the surface charges of the colloidal carriers were decreased with increasing oligonucleotide concentration. At a certain oligonucleotide concentration, complete charge neutralization led to the aggregation of the carrier systems. Further increasing oligonucleotide concentrations reversed the surface charge of liposomes and nanoparticles to a negative one. Ultrasonication was investigated as a possible means for the homogenization of the formed aggregates. However, the use of ultrasonication led to a time-dependent damage of oligonucleotides adsorbed onto AH-Chol liposomes and MMAEMC-nanoparticles, as well as of unbound oligonucleotides. Nearly 60% of the oligonucleotides adsorbed to MMAEMCnanoparticles and 65% of ODNs adsorbed to the liposomes were degraded by the effect of cavitation produced by ultrasonication within 10min. In contrast, the oligonucleotides were protected from degradation when DEAE-stabilized PHCA-nanoparticles were employed as ODN carriers. More than 80% of the oligonucleotides entangled in thesurface matrix of these nanoparticles remained intact.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.