609
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Glaucoma – ‘A Stiff Eye in a Stiff Body’

, &
Pages 152-160 | Received 21 Oct 2021, Accepted 21 Jan 2022, Published online: 07 Mar 2022
 

Abstract

Glaucoma is a progressive, age-related optic neuropathy, whereby the prevalence increases sharply over the age of 60 and is associated with increased systemic tissue stiffness. On a molecular basis, this is associated with increased deposition of collagen and loss of elastin structure, resulting in aberrant biomechanical compliance and reduced tissue elasticity. Increased tissue stiffness is a known driver of myofibroblast activation and persistence, especially in chronic cellular injuries via mechanotransduction pathways mediated by integrins and focal adhesion kinases. Evidence from histological and imaging studies plus force measurements of glaucomatous eyes show that several ocular tissues are stiffer than normal, healthy age-matched controls including the trabecular meshwork, Schlemm’s canal, cornea, sclera and the lamina cribrosa. This is associated with increased extracellular matrix deposition and fibrosis. This review reports on the evidence to support the concept that glaucoma represents ‘a stiff eye in a stiff body’ and addresses potential mechanisms to attenuate this.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.