53
Views
0
CrossRef citations to date
0
Altmetric
Articles

Scales of vertical motions due to an isolated vortex in ageostrophic balanced flows

Pages 315-338 | Received 30 Jun 2023, Accepted 19 Sep 2023, Published online: 24 Oct 2023
 

Abstract

Here we consider a model of an isolated vortex to understand the vertical dynamics induced by mesoscale eddies in the ocean. We use the analytical solutions to a balanced model for an ellipsoid of uniform potential vorticity to examine how the vertical motions induced depend on the vortex shape and its orientation, i.e. whether the vortex is vertically upright or tilted with respect to the vertical axis. The motion induced by the vortex can be divided into two kinds: (1) the interior flow which acts on the vortex itself and (2) the exterior flow which acts on its surroundings. For an upright ellipsoid, there are no self-induced vertical motions and the vortex rotates steadily about the vertical axis. However, for a tilted ellipsoid we find solutions exist where the vortex rotates about the vertical axis, while the vertical motions cause the tilt angle of the vortex to oscillate. This effect is stronger as the tilt angle is increased. Considering the exterior flow, there exists an exterior vertical velocity for the upright and tilted ellipsoids. However, the dynamics induced by the exterior vertical velocity is very different for the upright and tilted cases. We find that for an upright ellipsoidal vortex, the vertical motions are largest for vortices with high horizontal eccentricity and a vertical height-to-width aspect ratio near unity, vanishing as the horizontal cross-section of the vortex becomes circular. Instead for the tilted case, the vertical motions are largest when the horizontal cross section is circular, and for strongly prolate vortices, with the largest vertical motions occurring when the tilt angle is 45.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.