510
Views
42
CrossRef citations to date
0
Altmetric
Research Article

The Role of Flavin-Containing Monooxygenase (FMO) in the Metabolism of Tamoxifen and Other Tertiary Amines

, , &
Pages 139-147 | Published online: 09 Oct 2008
 

Abstract

Tamoxifen is utilized in breast cancer therapy and in chemoprevention. Tamoxifen may enhance risk for other neoplasias, especially endometrial cancer. The risk:benefit depends on the rate of metabolic activation versus detoxication. Cytochrome P450-dependent α-hydroxylation, followed by sulfonation, represents a metabolic activation pathway, producing products capable of covalent DNA adduction. In contrast, tamoxifen N-oxygenation represents a detoxication pathway, with the caveat that N-oxides can be reduced back to the parent amines. The N-oxygenation pathway will be the focus for this review. Dr. David Kupfer pioneered studies on cytochrome P450 and flavin-containing monooxygenase (FMO) tamoxifen metabolism. We collaborated with Dr. Kupfer's laboratory and recently determined that the low level of tamoxifen N-oxide production in human liver microsomes may be explained by the kinetics of FMO1 versus FMO3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.