945
Views
196
CrossRef citations to date
0
Altmetric
Research Article

Antioxidant Protective Mechanisms against Reactive Oxygen Species (ROS) Generated by Mitochondrial P450 Systems in Steroidogenic Cells

Pages 171-196 | Published online: 09 Oct 2008
 

Abstract

Mitochondrial P450 type enzymes catalyze central steps in steroid biosynthesis, including cholesterol conversion to pregnenolone, 11β and 18 hydroxylation in glucocorticoid and mineralocorticoid synthesis, C-27 hydroxylation of bile acids, and 1α and 24 hydroxylation of 25-OH-vitamin D. These monooxygenase reactions depend on electron transfer from NADPH via FAD adrenodoxin reductase and 2Fe-2S adrenodoxin. These systems can function as a futile NADPH oxidase, oxidizing NADPH in absence of substrate, and leak electrons via adrenodoxin and P450 to O2, producing superoxide and other reactive oxygen species (ROS). The degree of uncoupling depends on the P450 and steroid substrate. Studies with purified proteins and overexpression in cultured cells show consistently that adrenodoxin, but not reductase, is responsible for ROS production that can lead to apoptosis. In the ovary and corpus luteum, antioxidant enzyme activities superoxide dismutase, catalase, and glutathione peroxidase parallel steroidogenesis. Antioxidant β-carotene, α-tocopherol, and ascorbate can protect against oxidative damages of P450 systems. In testis Leydig cells, steroidogenesis is associated with aging of the steroidogenic capacity.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.