188
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Synthesis and In Vitro Properties of Dexamethasone 21-Sulfate Sodium as a Colon-Specific Prodrug of Dexamethasone

, , , , , , & show all
Pages 389-397 | Published online: 25 Sep 2008
 

ABSTRACT

We synthesized dexamethasone 21-sulfate sodium (DS) as a colon-specific prodrug of dexamethasone and investigated its properties. Introduction of a sulfate group to dexamethasone lowered the apparent partition coefficient from 52.5 to 0.27 in 1-octanol/pH 6.8 phosphate buffer at 37°C. DS was stable on incubation with buffer solutions of varied pH or with the upper intestinal contents of rats at 37°C for 24 h. On incubation with the cecal contents, DS was hydrolyzed by producing dexamethasone over 80% of the dose at 10 h. When DS was incubated with the cecal contents collected from trinitrobenzenesulfonic acid (TNBS)-induced colitic rats, the degree of prodrug hydrolysis and production of dexamethasone amounted to 70% of healthy rats. In comparison with prednisolone, hydrocortisone, and cortisone, dexamethasone was stable against bioinactivation by the cecal contents, a desirable property for the development of a colon-specific prodrug. These results demonstrated that DS might be delivered specifically to the colon as an intact form to produce dexamethasone in high yield, suggesting DS as a potential colon-specific prodrug of dexamethasone.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.