447
Views
57
CrossRef citations to date
0
Altmetric
Research Articles

A combination of complexation and self-nanoemulsifying drug delivery system for enhancing oral bioavailability and anticancer efficacy of curcumin

, , , , , & show all
Pages 847-861 | Received 02 May 2016, Accepted 19 Sep 2016, Published online: 06 Oct 2016
 

Abstract

Objective: Curcumin, the golden spice from Indian saffron, has shown chemoprotective action against many types of cancer including breast cancer. However, poor oral bioavailability is the major hurdle in its clinical application. In the recent years, self-nanoemulsifying drug delivery system (SNEDDS) has emerged as a promising tool to improve the oral absorption and enhancing the bioavailability of poorly water-soluble drugs. In this context, complexation with lipid carriers like phospholipid has also shown the tremendous potential to improve the solubility and therapeutic efficacy of certain drugs with poor oral bioavailability.

Methods: In the present investigation, a systematic combination of both the approaches is utilized to prepare the phospholipid complex of curcumin and facilitate its incorporation into SNEDDS. The combined use of both the approaches has been explored for the first time to enhance the oral bioavailability and in turn increase the anticancer activity of curcumin.

Results: As evident from the pharmacokinetic studies and in situ single pass intestinal perfusion studies in Sprague–Dawley rats, the optimized SNEDDS of curcumin–phospholipid complex has shown enhanced oral absorption and bioavailability of curcumin. The cytotoxicity study in metastatic breast carcinoma cell line has shown the enhancement of cytotoxic action by 38.7%. The primary tumor growth reduction by 58.9% as compared with the control group in 4T1 tumor-bearing BALB/c mice further supported the theory of enhancement of anticancer activity of curcumin in SNEDDS.

Conclusion: The developed formulation can be a potential and safe carrier for the oral delivery of curcumin.

Disclosure statement

The authors declare no conflicts of interest in this work.

Funding

The authors M. S. and S. J. acknowledge Council of Scientific and Industrial Research (CSIR) for providing research fellowship for this CDRI communication (9329).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.