321
Views
38
CrossRef citations to date
0
Altmetric
Research Article

Fabrication of rosuvastatin-loaded polymeric nanocapsules: a promising modality for treating hepatic cancer delineated by apoptotic and cell cycle arrest assessment

, & ORCID Icon
Pages 55-62 | Received 25 May 2018, Accepted 19 Aug 2018, Published online: 16 Sep 2018
 

Abstract

Nanotechnology has provided several advantages for the treatment of cancer. Polymeric nanocapsules (PNCs) were proven promising in the treatment of different cancer types, such as hepatic cancer. Meanwhile, the exploration of novel indications of old molecules with the purpose of cancer treatment has been widely reported. Among the promising therapeutic moieties, rosuvastatin (RV) was delineated as a potential anticancer drug. Hence, the target of the presented manuscript was to develop PNCs loaded with RV to overcome its delivery challenges and augment its anticancer activity. RV PNCs were fabricated by the nanoprecipitation method using poly-lactide-co-glycolide (PLGA) polymer, and were characterized for the size, polydispersity index (PDI), charge, entrapment efficiency EE%, in vitro release, stability, and morphology. Furthermore, their anticancer activity was tested on HepG2 cells using MTT assay, followed by elucidating the cytotoxic activity using flow cytometry. Results showed that RV PNCs displayed particle size ranging from 186 to 239 nm, average PDI, and negative zeta potential with sufficient stability for 3 months. PNCs were able to load RV at high EE% reaching 82.6% and sustain its release for eight hours. RV PNCs were superior in their anticancer activity on HepG2 cells, as delineated from the viability study and further elucidated by enhanced apoptosis in addition to cell cycle arrest at G2/M phase, suggesting their promise in treatment of hepatic cancer.

Acknowledgments

The authors wish to acknowledge Purac Company, Netherlands, Cargill Company, Germany, Gattefosse’ Company, France, and BASF Company, Germany for their kind supply of PLGA, Epikuron 200, Maisine oil, and poloxamer F127, respectively.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.