228
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Influence of punch geometry (head-flat diameter) and tooling type (‘B’ or ‘D’) on the physical–mechanical properties of formulation tablets

, ORCID Icon, , &
Pages 117-123 | Received 02 Apr 2018, Accepted 10 Sep 2018, Published online: 24 Oct 2018
 

Abstract

The presented study assessed the influence of punch geometry (head-flat [HF] diameter) and tooling type (‘B’ or ‘D’) on the physical–mechanical properties of tablets prepared by direct-compression of two guaifenesin (25% or 40% w/w) formulations. Tablets of both formulations were prepared on instrumented, single-layer, rotary tablet press using 10 mm, flat-faced, ‘B’ or ‘D’-type tooling with different HF diameters, and compression forces (CF) ranging from 5 to 25 kN with 5 kN increments. The tablets were evaluated for dimensions, weight variation, tensile strength (TS), friability, and capping index. In general, tablets prepared using ‘D’ tooling showed a significantly (p < 0.05) higher TS compared to those prepared using ‘B’ tooling, likely due to higher dwell-times associated with ‘D’ tooling. Formulations containing 25% w/w guaifenesin showed a significantly (p < 0.05) higher TS compared to those containing 40% w/w guaifenesin, at given compression CF, punch geometry, or tooling type. This could be due to the higher ratio of Prosolv® SMCC contributing to the compressibility. For both formulations compressed using ‘B’ tooling, differences in TS profiles were observed between different HF tooling. The TS of these tablets increased significantly with increasing HF diameter. For formulations compressed using ‘D’ tooling, this trend was observed only up to a CF of 15 kN, beyond which the TS plateaued, possibly due to work-hardening of the formulation at higher CF. These formulations also exhibited capping at CF above 15 kN and with higher HF diameters. The study showed a significant influence of punch geometry and tooling type on the physical properties of tablets.

Acknowledgments

The authors are thankful to Natoli Engineering for customizing the head flat and all the assistance throughout the research.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.