273
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Investigation of in vitro permeability and in vivo pharmacokinetic behavior of bare and functionalized MCM-41 and MCM-48 mesoporous silica nanoparticles: a burst and controlled drug release system for raloxifene

&
Pages 587-602 | Received 06 Apr 2018, Accepted 07 Jan 2019, Published online: 04 Feb 2019
 

Abstract

In the present work, MCM-41 and MCM-48 type of nanoparticles were successfully engineered. Effect of nanosize and amine functionalization on drug release, in vitro intestinal absorption and in vivo pharmacokinetic behavior was investigated in a comprehensive manner. The tailor-made bare and surface decorated MCM-41 and MCM-48 were synthesized and evaluated for their mesoporous skeleton, pore size, particle size, surface area, zeta potential, etc. by nitrogen sorption, DLS, TEM, etc. Incorporation of raloxifene (RLF) was affirmed using optimized immersion-solvent evaporation technique and its success confirmed by DSC, IR, and XRD analysis. TGA analysis revealed higher %grafting of amine groups on the exterior and larger RLF encapsulation into mesoporous derivate. The detailed in vitro release study revealed SGF to be the most compatible media for RLF showing an initial burst release from pristine nanoparticles and a delayed release from surface coated nanoparticles. Furthermore, release kinetics model data demonstrated Weibull and Higuchi as the best fit models for bare and amine-functionalized nanoparticles respectively. Moreover, an in vitro permeability study on Caco-2 cell line revealed higher absorption by engineered nanoparticle as compared to pure RLF and its marketed formulation. The supremacy in the in vivo pharmacokinetic parameters of RLF-41 and RLF-48 was demonstrated with 3.33 and 3.50 times enhancement in the bioavailability of RLF with respect to RLF suspension. To sum up, the results obtained were superior and promising for synthesized nanoparticles and more precisely for MCM-48 amongst them.

Acknowledgements

The authors are thankful to Zydus cadilla healthcare, Ahmedabad for providing swiss albino female mice to carry out the pharmacokinetic study. We also heartily thank them for providing pharmaceutical grade RLF as a gift sample.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.