218
Views
14
CrossRef citations to date
0
Altmetric
Research Articles

Optimization of the process variables of roller compaction, on the basis of granules characteristics (flow, mechanical strength, and disintegration behavior): an application of SeDeM-ODT expert system

Pages 1537-1546 | Received 23 Apr 2019, Accepted 12 Jun 2019, Published online: 05 Jul 2019
 

Abstract

The objective of the study was application of SeDeM-ODT expert system for optimization of process variables for roller compaction and for the preparation of granules with better flow, compressibility, and disintegration behavior. In the present study, granules were prepared at pre-determined (on the basis of factorial design) process variables and characterized using SeDeM-ODT expert system. Compatibility of ribavirin with excipients (microcrystalline cellulose, tablettose-80, cross carmellose sodium, and magnesium stearate) was evaluated by binary mixture approach, using FTIR. According to the SeDeM-ODT expert system, granules were characterized for various parameters related to flow, compressibility and disintegration behavior and Index of Good Compressibility and Buccodispersibility (IGCB) was calculated. The process variables resulting in highest IGCB value were considered as optimum. Ribavirin was found compatible with all the excipients used in the study and characteristics peaks were present in FTIR spectra after subjecting to stress conditions (75% relative humidity at 45 ± 5 °C) for 30 days. Both Ribavirin powder and Ribavirin containing powder blend had poor flow and compressibility while disintegration behavior was good due to higher water solubility. Screw speed of 35 rpm and roller speed at 12 rpm resulted in granules with acceptable characteristics. The IGCB value (5.63) of the granules was highest of all, indicating its better characteristics. SeDeM-ODT expert system presents a more practical picture of the granules and also predicts the mechanical strength and disintegration behavior of the tablets prepared from the granules. By proper optimization of screw and roller speed, efficiency of the process can be improved.

Acknowledgment

I am thankful to the management of Ferozsons Laboratories Ltd. Nowshera, Pakistan, for provision of the facilities to carry out the study.

Disclosure statement

No potential conflict of interest was reported by the author.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.