5
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Dietary Sodium Intake and Urinary Dopamine and Sodium Excretion During the Course of Blood Pressure Development in Dahl Salt-Sensitive and Salt-Resistant Rats

, &
Pages 2049-2060 | Published online: 26 Feb 2018
 

ABSTRACT

Recent studies have suggested that dopamine (DA) formed within the kidney may play an important role in promoting sodium excretion, and that renal production and excretion of DA is determined by dietary sodium intake. Inasmuch as increased sodium consumption produces hypertension in Dahl salt-sensitive (DS) rats but not in Dahl salt-resistant (DR) rats, the present study was designed to examine the relationship between sodium consumption and urinary excretion of DA in these rats. DS and DR rats were placed on either high sodium chloride (8%) or low sodium chloride (0. 4%) diets at 4 weeks of age and their systolic blood pressure (SBP), urine volume, urinary sodium and catecholamine excretion were measured once every week for the next 4 weeks. High sodium chloride diet increased SBP in DS rats at 6 weeks of age and SBP continued to rise until they were 8 weeks old. The SBP of DR rats did not reach hypertensive levels when they were given high sodium chloride diet. The SBP of DS rats on low sodium chloride diet was significantly higher than DR rats on the same diet. The urinary DA excretion increased with age in all four groups of rats and was similar when they were 8 weeks old. However, both DS and DR rats on high sodium chloride diet excreted greater amounts of sodium and had increased urine volume compared to the DS and DR rats on low sodium chloride diet. There were no significant differences in urinary NE or E excretion in these four groups of rats. Kidney levels of DA and NE were significantly lower in DS compared to DR rats on high sodium chloride diet. These results show that although there are no differences in urinary DA excretion between rats on low and high sodium intake, both DS and DR rats on high sodium chloride diet are able to exhibit a natriuretic response. The DS rats eliminate sodium at the expense of an elevated SBP whereas DR rats stay normotensive. Therefore, it appears that alterations in mechanisms controlling renal vascular resistance rather than sodium excretion are responsible for the development of hypertension in DS rats.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.