77
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Optimization of MPB for Sn Substituted Lead Bismuth Zirconate Titanate Thin Films by the Electromechanical Behavior Related to Energy Storage Capacity

, , &
Pages 83-90 | Received 26 Feb 2022, Accepted 14 Jun 2023, Published online: 05 Oct 2023
 

Abstract

In this article, we examined the electromechanical behavior of Sn-substituted Lead Bismuth Zirconate Titanate thin films (PBZST thin films). Using the pulsed laser deposition technique (PLD), the thin film growth parameters of bismuth-doped PZST close to MPB were adjusted by varying the ∼(Zr, Sn)/Ti ratios. Thin films (∼250 nm) with the stoichiometric formula Pb0.985Bi0.01(Zr0.7Sn0.3)xTi1 – xO3, (x = 0.935, 0.940, 0.945, and 0.950) were grown on a Pt/TiO2/SiO2/Si substrate using PLD technique at optimized conditions. P-E loop confirms that MPB is near x = 0.945, and further PFM measurements also confirmed the same. Analyzing the PFM phase and amplitude hysteresis loops, local piezo-electric coefficient and remnant strain values were computed as d33 = 330 pm/V and 0.33 at the MPB composition (x = 0.945).

Disclosure Statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.