42
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Novel Piezo-active 2–1–2 Composites with Sets of Large Hydrostatic Parameters

ORCID Icon
Pages 102-117 | Received 19 May 2023, Accepted 08 Jul 2023, Published online: 05 Oct 2023
 

Abstract

A 2–1–2 composite with two single-crystal components is studied for the first time to highlight large hydrostatic piezoelectric coefficients dh* and gh*, figure of merit dh*gh*, and electromechanical coupling factor kh*. Each 2–1–2 composite contains layers of domain-engineered [011]-poled relaxor-ferroelectric (1–x)Pb(Zn1/3Nb2/3)O3xPbTiO3 single crystal (x = 0.0475–0.09) and heterogeneous layers being systems of aligned piezoelectric Li2B4O7 single crystal rods in polyethylene, and these rods have an elliptic cylindrical shape. New diagrams show the volume-fraction ranges wherein large values of dh*> 10−9 C/N, dh*gh*> 2.10−10 Pa−1 and kh*≈ 0.5–0.6 are observed.

Acknowledgments

The author would like to thank Prof. Dr C. R. Bowen (University of Bath, UK) and Prof. Dr P. Bisegna (University of Rome Tor Vergata, Italy) for their interest in the field of advanced piezoelectric materials and applications.

Disclosure Statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This research was supported by the Southern Federal University (research topic “Development and Materials-Science Substantiation of the Creation of Materials and Products Based on Piezoelectric Ceramics Using Additive Technologies”, contract No. 176/22-D, July 11th, 2022).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.