1,263
Views
13
CrossRef citations to date
0
Altmetric
Review Articles

Kluyveromyces marxianus: a potential biocatalyst of renewable chemicals and lignocellulosic ethanol production

, , , &
Pages 1131-1152 | Received 02 Jul 2020, Accepted 25 Feb 2021, Published online: 02 May 2021
 

Abstract

Kluyveromyces marxianus is an ascomycetous yeast which has shown promising results in cellulosic ethanol and renewable chemicals production. It can survive on a variety of carbon sources under industrially favorable conditions due to its fast growth rate, thermotolerance, and acid tolerance. K. marxianus, is generally regarded as a safe (GRAS) microorganism, is widely recognized as a powerhouse for the production of heterologous proteins and is accepted by the US Food and Drug Administration (USFDA) for its pharmaceutical and food applications. Since lignocellulosic hydrolysates are comprised of diverse monomeric sugars, oligosaccharides and potential metabolism inhibiting compounds, this microorganism can play a pivotal role as it can grow on lignocellulosic hydrolysates coping with vegetal cell wall derived inhibitors. Furthermore, advancements in synthetic biology, for example CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats with Cas9)-mediated genome editing, will enable development of an engineered yeast for the production of biochemicals and biopharmaceuticals having a myriad of industrial applications. Genetic engineering companies such as Cargill, Ginkgo Bioworks, DuPont, Global Yeast, Genomatica, and several others are actively working to develop designer yeasts. Given the important traits and properties of K. marxianus, these companies may find it to be a suitable biocatalyst for renewable chemicals and fuel production on the large scale. This paper reviews the recent progress made with K. marxianus biotechnology for sustainable production of ethanol, and other products utilizing lignocellulosic sugars.

Acknowledgment

The authors are grateful to the CAPES-Brazil for the financial assistance for Chandel, A.K. (Process USP 15.1.1118.1.0) and Leonel, L.V. (Process CAPES 88882.431189/2019-01).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.