492
Views
7
CrossRef citations to date
0
Altmetric
Review Articles

Advances in pharmacology, biosynthesis, and metabolic engineering of Scutellaria-specialized metabolites

, , , , , , & ORCID Icon show all
Pages 302-318 | Received 22 Aug 2022, Accepted 02 Nov 2022, Published online: 29 Dec 2022
 

Abstract

Scutellaria Linn., which belongs to the family Lamiaceae, is a commonly used medicinal plant for heat clearing and detoxification. In particular, the roots of S. baicalensis and the entire herb of S. barbata have been widely used in traditional medicine for thousands of years. The main active components of Scutellaria, including: baicalein, wogonin, norwogonin, scutellarein, and their glycosides have potential or existing drug usage. However, the wild resources of Scutellaria plants have been overexploited, and degenerated germplasm resources cannot fulfill the requirements of chemical extraction and clinical usage. Metabolic engineering and green production via microorganisms provide alternative strategies for greater efficiency in the production of natural products. Here, we review the progress of: pharmacological investigations, multi-omics, biosynthetic pathways, and metabolic engineering of various Scutellaria species and their active compounds. In addition, based on multi-omics data, we systematically analyze the phylogenetic relationships of Scutellaria and predict candidate transcription factors related to the regulation of active flavonoids. Finally, we propose the prospects of directed evolution of core enzymes and genome-assisted breeding to alleviate the shortage of plant resources of Scutellaria. This review provides important insights into the sustainable utilization and development of Scutellaria resources.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by CAMS Innovation Fund for Medical Sciences (CIFMS) [Grant No. 2021-1-I2M-022], National Natural Science Foundation of China [Grant No. 82204577], and National Key R&D Program of China [2019YFC1711100].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.