Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 25, 2008 - Issue 1
188
Views
36
CrossRef citations to date
0
Altmetric
Original

Clock‐Controlled Endogenous Melatonin Rhythms in Nile Tilapia (Oreochromis niloticus niloticus) and African Catfish (Clarias gariepinus)

, , , &
Pages 31-49 | Received 17 Sep 2007, Accepted 04 Jan 2008, Published online: 07 Jul 2009
 

Abstract

The purpose of this work was to investigate the circadian melatonin system in two tropical teleost species characterized by different behavioral habits, Nile tilapia (diurnal) and African catfish (nocturnal). To do so, fish were subjected to either a control photoperiod (12L:12D), continuous light (LL) or darkness (DD), or a 6L:6D photoperiod. Under 12L:12D, plasma melatonin levels were typically low during the photophase and high during the scotophase in both species. Interestingly, in both species, melatonin levels significantly decreased prior to the onset of light, which in catfish reached similar basal levels to those during the day, demonstrating that melatonin production can anticipate photic changes probably through circadian clocks. Further evidence for the existence of such pacemaker activity was obtained when fish were exposed to DD, as a strong circadian melatonin rhythm was maintained. Such an endogenous rhythm was sustained for at least 18 days in Nile tilapia. A similar rhythm was shown in catfish, although DD was only tested for four days. Under LL, the results confirmed the inhibitory effect of light on melatonin synthesis already reported in other species. Finally, when acclimatized to a short photo‐cycle (6L:6D), no endogenous melatonin rhythm was observed in tilapia under DD, with melatonin levels remaining high. This could suggest that the circadian clocks cannot entrain to such a short photocycle. Additional research is clearly needed to further characterize the circadian axis in teleost species, identify and localize the circadian clocks, and better understand the environmental entrainment of fish physiology.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.