Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 26, 2009 - Issue 4
353
Views
41
CrossRef citations to date
0
Altmetric
Original

Temporal Gradient in the Clock Gene and Cell-Cycle Checkpoint Kinase Wee1 Expression along the Gut

, , , , , PhD, , , , & , PhD show all
Pages 607-620 | Received 18 Nov 2008, Accepted 20 Feb 2009, Published online: 07 Jul 2009
 

Abstract

Circadian clocks were recently discovered in the rat and mouse colon as well as mouse stomach and jejunum. The aim of this study was to determine whether clocks in the upper part of the gut are synchronized with those in the lower part, or whether there is a difference in their circadian phases. Moreover, the profiles of core clock-gene expression were compared with the profiles of the clock-driven Wee1 gene expression in the upper and lower parts of the gut. Adult rats were transferred to constant darkness on the day of sampling. 24 h expression profiles of the clock genes Per1, Per2, Rev-erbα, and Bmal1 and the cell-cycle regulator Wee1 were examined by a reverse transcriptase-polymerase chain reaction within the epithelium of the rat duodenum, ileum, jejunum, and colon. In contrast to the duodenum, the rhythms in expression of all genes but Rev-erbα and Bmal1 in the colon exhibited non-sinusoidal profiles. Therefore, a detailed analysis of the gene expression every 1 h within the 12 h interval corresponding to the previous lights-on was performed. The data demonstrate that rhythmic profiles of the clock gene Per1, Per2, Bmal1, Rev-erbα, and clock-driven Wee1 expression within the epithelium from different parts of the rat gut exhibited a difference in phasing, such that the upper part of the gut, as represented by the duodenum, was phase-advanced to the lower part, as represented by the distal colon. Our data demonstrate that the circadian clocks within each part of the gut are mutually synchronized with a phase delay in the cranio-caudal axis. Moreover, they support the view that the individual circadian clocks may control the timing of cell cycle within different regions of the gut.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.