142
Views
7
CrossRef citations to date
0
Altmetric
Original Article

Tumor-associated Glycans and Tregs in Immunogenicity of an Autologous Cell-based Vaccine

, &
 

ABSTRACT

Development of cancer vaccines targeting tumor-associated antigens (TAAs) is an alternative approach to chemotherapy with sustained anti-tumor effects. The success of active immunotherapy has been hampered by tumor-induced immune suppressors. Regulatory T cells (Tregs) are a population of immune suppressors with a proven role in regulating anti-tumor immune responses. Removing or subduing Tregs activity leads to more robust anti-tumor immune responses. Here, we used a cell-based vaccination strategy in the 4T1 murine mammary model to examine whether bulk removal of certain TAAs, using their glycan profile, can affect the immunogenicity of the vaccine. We employed affinity columns of several lectins that are reactive with breast cancer cell lines to deplete lectin-reactive TAAs, while enriching for other antigens. Wheat germ agglutinin (WGA), concanavalin A (Con A), Vicia villosa (VVA), and Griffonia simplicifolia lectin-I (GS-I) were used to fraction crude tumor secreted antigens (TSA). Fractions were tested for their ability to stimulate Tregs and their anti-tumor efficacy. We observed that crude TSA activated Tregs and activation of CD4+CD25+ cells led to an inhibitory function on CD4+CD25 effector cells. Immunization of mice with GS-I- and VVA-depleted fractions significantly delayed tumor establishment and inhibited lung metastases. Depletion of WGA-reactive glycoconjugates led to activation of Tregs, larger tumors and more distant metastases. The data indicate that TAAs can be enriched using their glycan expression pattern to weaken immune suppression and improve anti-tumor response. Therefore, the efficacy of autologous cancer cell vaccination can be improved through enrichment for certain TAAs using carbohydrate specificity.

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Funding

This work was supported by a grant from Arkansas Breast Cancer Research Program (239/G1-11257-01) to BMK and a Clinical Translational Award from the Department of Defense Breast Cancer Program (W81XWH-06-1-0542) to TKE.

Additional information

Funding

This work was supported by a grant from Arkansas Breast Cancer Research Program (239/G1-11257-01) to BMK and a Clinical Translational Award from the Department of Defense Breast Cancer Program (W81XWH-06-1-0542) to TKE.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.