2,381
Views
2
CrossRef citations to date
0
Altmetric
Clinical Study

Explainable machine learning model for predicting furosemide responsiveness in patients with oliguric acute kidney injury

, , , &
Article: 2151468 | Received 22 Apr 2022, Accepted 06 Oct 2022, Published online: 16 Jan 2023
 

Abstract

Background

Although current guidelines didn’t support the routine use of furosemide in oliguric acute kidney injury (AKI) management, some patients may benefit from furosemide administration at an early stage. We aimed to develop an explainable machine learning (ML) model to differentiate between furosemide-responsive (FR) and furosemide-unresponsive (FU) oliguric AKI.

Methods

From Medical Information Mart for Intensive Care-IV (MIMIC-IV) and eICU Collaborative Research Database (eICU-CRD), oliguric AKI patients with urine output (UO) < 0.5 ml/kg/h for the first 6 h after ICU admission and furosemide infusion ≥ 40 mg in the following 6 h were retrospectively selected. The MIMIC-IV cohort was used in training a XGBoost model to predict UO > 0.65 ml/kg/h during 6–24 h succeeding the initial 6 h for assessing oliguria, and it was validated in the eICU-CRD cohort. We compared the predictive performance of the XGBoost model with the traditional logistic regression and other ML models.

Results

6897 patients were included in the MIMIC-IV training cohort, with 2235 patients in the eICU-CRD validation cohort. The XGBoost model showed an AUC of 0.97 (95% CI: 0.96–0.98) for differentiating FR and FU oliguric AKI. It outperformed the logistic regression and other ML models in correctly predicting furosemide diuretic response, achieved 92.43% sensitivity (95% CI: 90.88–93.73%) and 95.12% specificity (95% CI: 93.51–96.3%).

Conclusion

A boosted ensemble algorithm can be used to accurately differentiate between patients who would and would not respond to furosemide in oliguric AKI. By making the model explainable, clinicians would be able to better understand the reasoning behind the prediction outcome and make individualized treatment.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

Deidentified data pertaining to specific analysis may be available upon reasonable request from the corresponding author, pending approval from Monash Health research directorate.

Additional information

Funding

This work was supported by the Project funded by China Postdoctoral Science Foundation (2020M682422) and National Natural Science Foundation of China (82000479).