2,882
Views
1
CrossRef citations to date
0
Altmetric
Clinical Study

Bone marrow mesenchymal stem cell-derived exosomal miR-30e-5p ameliorates high-glucose induced renal proximal tubular cell pyroptosis by inhibiting ELAVL1

, , , , &
Article: 2177082 | Received 06 Jul 2022, Accepted 31 Jan 2023, Published online: 16 Feb 2023
 

Abstract

Background

The rapid increase in the prevalence of diabetes has resulted in more cases of diabetic kidney disease (DKD). Treatment with bone marrow mesenchymal stem cells (BMSCs) may represent an alternative strategy to manage DKD.

Methods

HK-2 cells were treated with 30 mM high glucose (HG). Bone marrow MSC-derived exosomes (BMSC-exos) were isolated and internalized into HK-2 cells. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) and lactate dehydrogenase (LDH) assays were used to measure viability and cytotoxicity. The secretion of IL-1β and IL-18 was measured by ELISA. Pyroptosis was assessed by flow cytometry. Quantitative RT-PCR was used to measure the levels of miR-30e-5p, ELAV like RNA binding protein 1 (ELAVL1), IL-1β, and IL-18. The expression of ELAVL1 and pyroptosis-associated cytokine proteins was determined by western blot analysis. A dual-luciferase reporter gene assay was conducted to confirm the relationship between miR-30e-5p and ELAVL1.

Results

BMSC-exos decreased LDH, IL-1β, and IL-18 secretion and inhibited the expression of the pyroptosis-related factors (IL-1β, caspase-1, GSDMD-N, and NLRP3) in HG-induced HK-2 cells. Moreover, miR-30e-5p depletion derived from BMSC-exos promoted HK-2 cell pyroptosis. Besides, miR-30e-5p over-expression or ELVAL1 knockdown could directly inhibit pyroptosis. ELAVL1 was a target of miR-30e-5p and knocking down ELAVL1 reversed the effect of miR-30e-5p inhibition in BMSC-exos-treated HK-2 cells.

Conclusions

BMSC-derived exosomal miR-30e-5p inhibits caspase-1-mediated pyroptosis by targeting ELAVL1 in HG-induced HK-2 cells, which might provide a new strategy for treating DKD.

Acknowledgements

The authors give our sincere gratitude to the reviewers for their constructive comments.

Author contributions

Ya-Ning Hao: guarantor of integrity of the entire study; Dan Niu: study concepts, study design, definition of intellectual content, manuscript preparation, and manuscript editing; Jia Lv and Wan-Hong Lu: literature research, clinical studies, data analysis, and statistical analysis; Xiao-Pei Wang: experimental studies and data acquisition; Wan-Hong Lu and Li-Yi Xie: manuscript review.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by grants from Key Research and Development Plan of Shanxi Province in China [No. 2017SF-133].