Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 12, 2000 - Issue sup4
265
Views
46
CrossRef citations to date
0
Altmetric
Research Article

IMMUNE BIOMARKERS IN RELATION TO EXPOSURE TO PARTICULATE MATTER: A Cross-Sectional Survey in 17 Cities of Central Europe

, , , , , , , , , , , , , , , , , & show all
Pages 1-14 | Received 01 Sep 2001, Accepted 01 Sep 2001, Published online: 01 Sep 2001
 

Abstract

Human population data on air pollution and its effects on the immune system are scarce. A survey was conducted within the framework of the Central European Study of Air Quality and Respiratory Health (CESAR) to measure a panel of immune biomarkers in children of Bulgaria, Czech Republic, Hungary, Poland, Romania, and Slovakia. Seventeen cities were chosen to represent a wide range of exposure to outdoor air pollution. In each, ambient particulate matter of less than 10 μm diameter and less than 2.5 μm diameter (PM10 and PM2.5) were measured with a Harvard impactor. Blood was collected from 366 school children aged 9 to 11 yr between 11 April and 10 May 1996. The percentage of B, total T, CD4 +, CD8 +, and natural killer (NK) lymphocytes was determined by flow cytometry (Becton Dickinson); total immunoglobulins of class G, M, A and E (IgG, IgM, IgA, and IgE) were measured in serum using nephelometry (Behring). Associations between PM and each log-transformed biomarker concentration were studied by linear regression, in a two-stage model. The yearly average concentrations varied from 41 to 96 μg/m3 for PM10 across the 17 study areas, from 29 to 67 μg/m3 for PM2.5, and from 12 to 38 μg/m3 for PM10-2.5 (coarse). Number of B, CD4 +, CD8 +, and NK lymphocytes increased with increasing concentration of PM, having adjusted for age, gender, parental smoking, laboratory of analysis, and recent respiratory illness. Differences in lymphocyte number were larger and statistically significant for exposure to PM2.5. Similar results were found when we examined the association between PM and lymphocyte number separately for each laboratory. Total IgG was increased with increasing concentration of PM, significantly in the case of PM2.5. When we repeated the analyses with two other statistical approaches the results did not differ from those reported here. The effect of coarse PM on lymphocyte numbers appears small in comparison to PM2.5. One possible interpretation of our findings is that long-term exposure to airborne particulates leads to inflammation of the airways and activation of the cellular and humoral immune system.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.