Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 16, 2004 - Issue 6-7
130
Views
71
CrossRef citations to date
0
Altmetric
Research Article

Nasal Toxicity of Manganese Sulfate and Manganese Phosphate in Young Male Rats Following Subchronic (13-Week) Inhalation Exposure

, , , , &
Pages 481-488 | Published online: 01 Oct 2008
 

Abstract

Growing evidence suggests that nasal deposition and transport along the olfactory nerve represents a route by which inhaled manganese and certain other metals are delivered to the rodent brain. The toxicological significance of olfactory transport of manganese remains poorly defined. In rats, repeated intranasal instillation of manganese chloride results in injury to the olfactory epithelium and neurotoxicity as evidenced by increased glial fibrillary acidic protein (GFAP) concentrations in olfactory bulb astrocytes. The purpose of the present study was to further characterize the nasal toxicity of manganese sulfate (MnSO4) and manganese phosphate (as hureaulite) in young adult male rats following subchronic (90-day) exposure to air, MnSO4 (0.01, 0.1, and 0.5 mg Mn/m3), or hureaulite (0.1 mg Mn/m3). Nasal pathology, brain GFAP levels, and brain manganese concentrations were assessed immediately following the end of the 90-day exposure and 45 days thereafter. Elevated end-of-exposure olfactory bulb, striatum, and cerebellum manganese concentrations were observed following MnSO4 exposure to ≥0.01, ≥0.1, and 0.5 mg Mn/m3, respectively. Exposure to MnSO4 or hureaulite did not affect olfactory bulb, cerebellar, or striatal GFAP concentrations. Exposure to MnSO4 (0.5 mg Mn/m3) was also associated with reversible inflammation within the nasal respiratory epithelium, while the olfactory epithelium was unaffected by manganese inhalation. These results confirm that high-dose manganese inhalation can result in nasal toxicity (irritation) and increased delivery of manganese to the brain; however, we could not confirm that manganese inhalation would result in altered brain GFAP concentrations.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.