Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 17, 2005 - Issue 13
179
Views
57
CrossRef citations to date
0
Altmetric
Research Article

Disruption of Iron Homeostasis as a Mechanism of Biologic Effect by Ambient Air Pollution Particles

&
Pages 709-716 | Received 15 Mar 2004, Accepted 09 May 2005, Published online: 06 Oct 2008
 

Abstract

Several features of the clinical presentation and changes in physiology and pathology following exposure to many diverse ambient air pollution particles are comparable, suggesting a common mechanism for their biological effect. We propose that a mechanism of biological effect common to many ambient air pollution particles is a disruption of iron homeostasis in cells and tissues. Among traits shared by every particle-related lung injury is the introduction of a solid–liquid interface into the respiratory tract. All surfaces of particulate matter have some concentration of oxygen-containing functional groups. As a result of its electropositivity, Fe3+ has a high affinity for oxygen-donor ligands and will react with these groups at the particle surface. Retained particles accumulate metal from available sources in a cell and tissue, and this complexed iron mediates oxidant generation. In addition to complexation onto the solid–liquid interface provided by the surface of particulate matter (PM), there are several alternative pathways by which metal homeostasis in the lower respiratory tract can be disrupted following exposure to ambient air pollution particles to affect an oxidative stress. Evidence suggests that disruption in iron homeostasis following exposures to ambient air pollution particles is an initial event in their biological effect. An association between metal equilibrium in the lower respiratory tract and biological effect in the lung could explain the observed differential toxicity of ultrafine, fine, and coarse particles and disparities in host susceptibility.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.