Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 21, 2009 - Issue sup1
148
Views
29
CrossRef citations to date
0
Altmetric
Research Article

Surface modification and size dependence in particle translocation during early embryonic development

, , , , , , & show all
Pages 92-96 | Received 27 Mar 2009, Accepted 02 Apr 2009, Published online: 30 Jun 2009
 

Abstract

Since the mid-1990s, the number of studies linking air pollutants to preterm and low birth weight, as well as to cardiac birth defects, has grown steadily each year. The critical period in the development of mouse embryos begins with the commencement of gastrulation at day 7.5 of gestation. Our aim is to examine the role of particles size and surface modification in particle translocation during this early embryonic development. Fluorescent polystyrene particles (PS) were employed because they offer an efficient and safe tracking method. Pregnant female mice were sacrificed at 7.5 days of gestation. After cutting open the deciduas, the parietal endoderm was carefully separated and removed. Different sizes of amine- and carboxyl-modified PS beads were injected via the extraembryonic tissue. The embryos were incubated for 12 h, and were investigated under fluorescent microscopy, confocal microscopy, and mesoscopic fluorescence tomography. The results show that 20-nm carboxylic PS distribute in the embryonic and extraembryonic germ layers of ectoderm, mesoderm, and endoderm. Moreover, when the particles are bigger than 100 nm, PS accumulate in extraembryonic tissue, but nevertheless 200-nm amine-modified particles can pass into the embryos. Interestingly, a growth inhibition was observed in the embryos containing nanoparticles. Finally, the stronger translocation effect is associated with amine- modified PS beads (200 nm) instead of the smaller (20 nm, 100 nm) carboxyl ones.

Acknowledgments

We thank Dr. Ingo Burtscher and Andreas Voss for their technical advice regarding confocal microscopy.

Declaration of interest: This work was supported by Framework 7th and National Council of Science and Technology (CONACyT, Mexico).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.