92
Views
13
CrossRef citations to date
0
Altmetric
Research Paper

MGF E peptide pretreatment improves collagen synthesis and cell proliferation of injured human ACL fibroblasts via MEK-ERK1/2 signaling pathway

, , , &
Pages 29-38 | Received 22 Dec 2016, Accepted 17 Apr 2017, Published online: 29 May 2017
 

Abstract

Injured anterior cruciate ligament (ACL) is hard to heal due to the poor proliferative potential of ACL fibroblasts. To verify whether mechano-growth factor (MGF) E peptide can restore the cell proliferation of injured ACL fibroblasts, ACL fibroblasts pretreated with MGF E peptide were subjected to injurious stretch and the outcomes were evaluated at 0 and 24 h. After injured, the type III collagen synthesis was increased at 0 h while inhibited at 24 h. The matrix metalloproteinase-2 (MMP-2) activity/expression was up-regulated, but the cell proliferation was inhibited. Fortunately, exogenous MGF E peptide decreased the type I/III collagen synthesis at 0 h but improved the type III collagen synthesis at 24 h. It decreased the MMP-2 activity/expression of injured ACL fibroblasts. Besides, MGF E peptide accelerated the cell proliferation via MEK-ERK1/2 signaling pathway. Our results implied that MGF E peptide pretreatment could provide a new efficient approach for ACL regeneration.

Declaration of interest

The authors report no declarations of interest. This work was supported by the National Natural Science Foundation of China [11672051] and the Fundamental Research Funds for the Central Universities [CQDXWL-2013-026].

Supplementary material available online

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.