150
Views
14
CrossRef citations to date
0
Altmetric
Original

A direct comparison of exogenous and endogenous inhibition of return and selective attention mechanisms in the somatosensory system

, &
Pages 269-279 | Received 18 Jan 2005, Accepted 12 Sep 2005, Published online: 10 Jul 2009
 

Abstract

The interaction of excitation and inhibition in responses due to attentional mechanisms in the visual system has been investigated. The studies reported herein use the tactile system of humans to test a specific hypothesis about the processes of attention that have never been directly addressed. Both exogenous and endogenous Inhibition of Return (IOR) reaction-time paradigms with a 100 Hz, 35 µm of peak displacement amplitude were used. In these experiments multiple Stimulus Onset Asynchronies were tested which made it difficult for subjects to learn timing patterns. We tested whether a detection time to a target which is to be attended to is a composite of at least two underlying mechanisms. These mechanisms were explored using exogenous and endogenous IOR experiments. It is hypothesized that these mechanisms work in a push–pull fashion: one deploying attention when new events occur, and the other withdrawing attention (“Disengagement”) after it has been deployed. Based on the results, a new hypothesis is proposed stating that one form of attention (selective attention) competes with IOR in determining the time taken to detect a target in the tactile system.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.