101
Views
19
CrossRef citations to date
0
Altmetric
Research Article

Cold temperatures reduce the sensitivity of stored platelets to disaggregating agents

&
Pages 11-20 | Published online: 07 Jul 2009
 

Abstract

In this study, we compared the effect of signal transduction inhibitors on fibrinogen binding, aggregation, the activation state of GPIIb-IIIa, and cytosolic calcium levels in cold and room temperature-stored platelets. Cold-stored platelets have a higher sensitivity to agonist-induced aggregation when compared to room temperature-stored platelets. We also found that cold-stored platelets had a significantly higher aggregation response to ADP and epinephrine, while platelets stored at room temperature responded poorly to these agonists (mean values of 61 vs. 18%, n = 14). Four inhibitors were selected to target various signaling pathways. Cold-stored platelets were more resistant to disaggregation by promethazine, prostaglandin D2, yohimbine, and echistatin. The effects of cold temperatures on stored platelets are targeted to activation pathways as there was no spontaneous aggregation or spontaneous fibrinogen binding as measured in this study. PAC-1 binding was not inhibited to the same degree as aggregation or fibrinogen binding responses, suggesting that the disaggregation was not caused by a change in the conformation of GPIIb-IIIa. Cytosolic calcium levels did not decrease in cold-stored platelets after inhibitor addition. The inhibitors are likely acting after the establishment of the GPIIb-IIIa activation state and may affect the post-occupancy signaling by the fibrinogen-occupied integrin. Differences between aggregation and disaggregation responses of cold- and room temperature-stored platelets suggest that cold-stored platelets may have different mechanisms to stabilize platelet aggregates during their formation.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.