54
Views
32
CrossRef citations to date
0
Altmetric
Research Article

Membrane lipid fluidity of blood platelets: a common denominator that underlies the opposing actions of various agents that affect platelet activation in whole blood

Pages 315-327 | Published online: 07 Jul 2009
 

Abstract

Membrane lipid fluidity (MLF) is thought to play a crucial role in signal transduction and is believed to affect the responsiveness of blood platelets. In a recent study it was demonstrated that EDTA, used as the blood anticoagulant, brought about a significant increase in expression of GMP-140 antigen, and this effect was accompanied by a significant increase in platelet MLF. Moreover, this spontaneous EDTA-driven platelet activation was vastly attenuated in the presence of tissue-type plasminogen activator, which is also known to affect platelet MLF. The hypothesis was raised that the modulation of platelet membrane fluidity by EDTA might underlie platelet spontaneous activation in the presence of EDTA. To further explore the possible molecular mechanism(s) of the EDTA-dependent triggering of signal transduction pathway(s) in human blood platelets, we monitored the extent of spontaneous platelet activation in the presence of EDTA and selected platelet membrane 'fluidizers' and 'rigidizers'. A reduction in the EDTA-dependent platelet release and activation was noted, not only in the presence of rt-PA (by over 50%, P < 0.001), which acted as a rigidizer of platelet membrane fluidity (ESR h+1/h0 ratios of 5-DOXYL-Ste and 12-DOXYL-Ste decreased by 6.2%, P 0.0001, and 3.8%, P < 0.02, respectively), but also in the presence of other modulators of MLF, regardless of their fluidizing or rigidizing effects. Both rigidizers (procaine and lidocaine, 5-DOXYL-Ste h+1/h0 reduced by up to 6.5%, 12-DOXYL-Ste h+1/h0- by up to 4.5%, P < 0.02 or less) and fluidizers (benzyl alcohol, ethanol, 12-DOXYL-Ste h+1/h0 increased by 17.8% and 6.1%, respectively, P 0.0001) of platelet membranes significantly depressed platelet activation (respectively, down to 1.1%, 7.7%, 6.7% and 8.5% vs control EDTA 22.9% of CD62-positive platelets). We suggest that EDTA induces alterations in membrane glycoprotein structure and affect MLF by altering lipid-protein interactions, and thus triggers signal transduction in the course of platelet activation. The resulting displacements in platelet membrane proteins, dislocation of membrane components and/or distortion of lipid-protein interactions could generate an 'outside-in' signalling that is mediated by the altered platelet MLF. Overall, it is likely that interference with the structure and conformation of selected domains of platelet membrane proteins might be the crucial mechanism by which EDTA leads to exaggerated activation of platelets in whole blood.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.