438
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Low cost network traffic measurement and fast recovery via redundant row subspace-based matrix completion

ORCID Icon, , , &
Article: 2218069 | Received 19 Dec 2022, Accepted 20 May 2023, Published online: 13 Jun 2023
 

Abstract

Traffic matrices (TMs) are essential for managing networks. Getting the whole TMs is difficult because of the high measurement cost. Several recent studies propose sparse measurement schemes to reduce the cost, which involve taking measurements on only a subset of origin and destination pairs (OD pairs) and inferring data for unmeasured OD pairs through matrix completion. However, existing sparse network measurement schemes suffer from the problems of high computation costs and low recovery quality. This paper investigates the coherence feature of real traffic flow data traces (Abilene and GÈANT). Both data sets are high coherence, with column coherence greater than row coherence. According to the coherence feature of both data sets, we propose our Redundant Row Subspace-based Matrix Completion (RRS-MC). RRS-MC involves several techniques. Firstly, we design an algorithm to identify subspace rows (OD pairs) from historical data. Secondly, based on the identified subspace rows, we design our sampling scheduling algorithm, which takes full measurement samples in subspace rows while taking partial measurement samples in the remaining rows. Moreover, we propose a redundant sampling rule prevent the recovery accuracy decrease caused by the subspace rows varying. Finally, we design a completion algorithm to recover the partially measured rows. We conduct extensive experiments. Results indicate that the proposed scheme is superior to the state-of-the-art sampling and completion scheme in computation costs and recovery accuracy.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Correction Statement

This article has been corrected with minor changes. These changes do not impact the academic content of the article.

Additional information

Funding

The work was supported by the National Natural Science Foundation of China [grant numbers 61972144 and 62025201.